HEAT AND MASS TRANSFER BETWEEN A BOILING
LIQUID AND BUBBLES

V. I. Bronshtein and T, L. Perel'man UDC 532.529.5:536.423.1

A method is proposed for calculating the flow of a boiling liquid with bubbles through vertical
pipes (containers).

The results obtained in [1-13] pertaining to the integral characteristics of the bubble made and to the
dynamics of individual bubble buildup can be useful for a more systematic approach to the problem of deter-
mining the local characteristics of the bubble mode,

It is essential here that the equations of mixture flow must be considered simultaneously with the
equation representing the bubble size-distribution function, For a vertical container (pipe) this latter equa-
tion (averaged over the radius, without taking into account the fragmentation and the merger of bubbles) is

Pys (1)
U

where pdx denotes the number of bubbles of a size v which are contained in volume A(x)dx. With the aid
of the results in [7-9], the flow velocity and the buildup rate of a moving bubble can be written as
1
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Exponents m and n depend on the bubble dimensions [4, 7, 8], For a uniformly superheated (or sub-
heated) liquid with AT = const, n¢ = const and, if ¢, = §(v—v,) and ¢, = 6(v—vg), then the steady-state dis-
tribution ¢(x, v) is
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The upper signs correspond to a superheated liquid, the lower signs correspond to a subheated liquid.
Exponents m and n in (3) depend on the bubble size as follows [1]:
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The factor ¢ ™0 in (3) indicates that the density distribution decreases as the bubble size v increases, The
total quantity of bubbles and the vapor content distribution ¢ from (3) are (at u; = const)
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According to (7), the vapor content ¢ ~ x° if the bubble buildup during the flow follows Eq. (), but ¢ ~ x
if there is no bubble buildup and o = 0. The average number of bubbles of a size v within the entire volume
can be found from Eq, (1) averaged over x:
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In order to determine the distribution of bubbles, per unit wall area, which emerge in the vapor nuclei and
then build up until they separate, it is necessary to solve Eq. (1) for (4 ¢)x = 0 with a given size distribu-
tion of vapor nuclei and a stationary bubble buildup according to the law in [7] (t; denoting the average dwell
time of a bubble at the wall), This solution is
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FO, Ay =F,(R); R=1t 2;f(t, Ry=F(R—2yt%)exp (—t—-) , (9)
1
with R denoting the bubble radius and R denoting the buildup rate of a stationary bubble. Distribution (9)
can be used as a constraint for gc, ¢, in the solution of Egs, (1). Another proposed method of determining
the vapor content in a boiling liquid is as follows, By integrating Eq, (1) for ¢ with respect to vdv, we
arrive at the continuity equation for the vapor phase:
9
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Here cA = [ vedv, ciﬁicA = [ yovdv, and y = u +ug, According to (10), ¢; can be determined if the form
of the profile ug(v) is known:
{u,pudo - fu,pdv

= Y=

(Jpvdu)u, ! {odv (11)
By averaging Eq. (1), we have lost some information and, therefore, ¢, must be determined either from
tests or from the solution to (1) with simplifying assumptions, If u; = const, then ¢y = 1, The vapor supply
generated by the buildup of bubbles during the time of flow is equal to H; = [ vedv. The quantity Hy must
be proportional to the quantity of vapor in the bubbles which arrive at point (t, x) from the bottom and from
the lateral walls from x to x—ut < 0:
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Here A, = 0, if x—wyt > 0, t' = —3 dx/uy, t" = —de/ui, and x,, v, are the bubble coordinates at the in-

Xa 1)
stant of separation from the wall, In order to determine vx(t, t', X, Xg, V), We modify Zavoiskii's formula
(2) 12, 3] with AT = AT (t, X):
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With the bubble distribution on the walls given as ¢ = 6(v—vy) and ¢y = §(v—v,), we obtain for Hy with
n=1/2 [8]
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where Cy, C, characterize boiling at the lateral walls and C3, C, characterize boiling at the container bot-
tom, If x—ut > 0, then C;=C, = 0. Inserting (14) into (10) yields the (t, x)-distribution of vapor content:
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Ifx—uyt > 0, t' = t—(x—x")/u, t" = ' —(x'—-x")/u;, t" = t' —(x'—x")/uy, then Dy = D, = D; = 0. If @ = const
(AT = const), then, according to (15), ¢ ~ t* when x—wt > 0 and c(x) is the same as distribution (7) based
on (3) when x—wyt < 0. If a(t)—a(t—x/u) <« 1, then a(t, x) can be taken out of the integral signs and a solu-
tion the same as for o = const can be obtained, If the temperature distribution AT (t, x) and thus the q(t, %)
distribution are known, therefore, then Eq, (15) defines the vapor content c(t, x) inside a vertical container
(pipe). In the general case AT(t, x) must be determined together with c(i, x) from the energy equation, We
will write here the one-dimensional continuitfy equation for the vapor phase and the one-dimensional energy
equation for the mixture; the other equations then following analogously:

(PscA); + (orthycA) = prH;
(et A+ p (1 — ) hA), + (o A+ p (1 —0) uhA), = g5
According to [12], T = Tgand hyy = cpTs + hevap‘ If the enthalpy of vapor is hy =h + hevap = cpAT + hyg,
then the relative error § = cpAT/ (cpTs + hevap) « 1 for most substances., For instance, §(H,0) = 10-4,

5(MNy) = 0,006, 6(0g) = 0.001, 6(Li) = 107°, In that case (16) yields, with g = cpAT/a = const (2), the equa-
tions

(16)
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(xpA), + (UGA), = p,H.

Inserting H(t, X) into (17) yields nonlinear integrodifferential equations (inasmuch as ne and v, are func-
tions of AT) for c(t, x) and AT (t, x), For the steady-state case (6/0t= 0 and GA = const) Eqgs. (17) and (14)
can be written as
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where B, denotes the energy consumed on generating bubbles of size v, at the height x, B, denotes the en-
ergy consumed on the bubble buildup because of their initial size vy, and B; denotes the energy consumed
on the bubble buildup because of the superheat (considering now that vy ~ 0). Within certain ranges of AT
the quantities n; and ngv, can be represented in terms of power functions in AT [1-6, 10, 11} (letting P¢

= const and A = const):
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If the bubbles build up only slightly during the flow, i.e,, when the liquid is superheated only at the walls,
thenBz NB3 "‘0, v NVO,

B(GA) o, = gy — A, (GAX, = By, Ay =0, 0 By = sy (20)
and the solution for qy = const, Ja »1, r=2 [4] is
,_ Vg + 95th (VA q5x)
(X)) = —— — _—— ’
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=B, Y a? (x) dx'; (21)
0

‘_72 = q4/GAB; Zz = A,/GAp; Bz = B,/GAB.
For gy = 0 and any value of r

1
a () =l + (1 —na,(x—x) " (22)

If the liquid is sufficienily superheated over the entire volume, then B, » B,, By >» By, and for By > B,
(i.e., when the bubble buildup is determined mainly by size v, at separation) Eq. (18) yields

B(GA @, = g, — Aa(9)o? — A (9 [ o (§) dE. , (23)
0
For Ja » 1, according to [10], p = 0 and the solution to (23) is
a(x) =exp | — Zx'rq—-ixz & 'le—l—':q‘ixz dx +a, (24)
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When vj ~ 0, i.e,, when By » By, Eq. (18) yields
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.o 0 (25)
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For s = 0 Eq, (25) reduces to
Y =, — YV (@+b9—bY]; Y (0) = 0; ¥ (0)=0; ¥ (0) =t (26)

Equations (25) and (26) as well as the general equation (18) can be solved only numerically. Let us consider
the case where no boiling occurs at the lateral walls and bubbles appear only on the bottom of the container
(in a pipe they are brought into a given segment together with the liquid from below). From Eq. (18) we ex-
tract the terms which characterize boiling on the bottom:

o= 75 —a [a+b[a@adal;
0

, (27)
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The nonlinear equation (27) will be now solved for the simplest forms of heat sources c—lz;:
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Fig. 1. Distribution of superheat a(x)
(I) and of vapor content X(x) (II) along

a pipe: dxy = 0 (A), qx = const, gy

= piﬂheva,p (Bl), g5 = const = PthEVap
(B2), a5 = g™ (C).

Gz = Qoexp (—¥0); @ (X) = ~;— : %; u() =%¢(g_)(_? ‘/gexp(j%"_)); 30)

Z() = Cdy () + Cul_y () t =V Tagexp (—l;‘—) :
r5F. a®4q, — —
v=y2C; C=ba,+ —y u(0) = a; u,(0) = by,

Constants C; and C, are determined from the initial conditions u(0) and ux(0). Solutions (28)-(30) are shown
diagramatically in Fig. 1. Depending on the relation between qx and «,, the superheat of the liquid along

a pipe first rises as long as the heat consumed on bubble buildup does not compensate for the presence of
heat sources in the volume, and then drops to zero while the vapor content increases to a constant level or
till the flow mode changes, Bubbles coming from the lateral walls (solutions (21), (22), (24), and Eq, (18))
have an analogous effect, but Eq, (18) can be solved only numerically,

This method is applicable also to other modes of two-phase fluid flow, We then express the mags
source in one phase as [13]
‘:’ X
Mt x) = s

(3 x—u,t

o (t_x—x ¥ m;)dmc(t, xt;xt,x,mc)
Uy

dx'dme. (31)
In a droplet-annular flow mode ¢, denotes the number of droplets forming at instant t—(x—x'")/u; across
section A (x'), dmg/dx denotes the rate of change of droplet mass during the flow, t', x', and mg are the
time, the location, and the mass of a droplet nucleus, In a projectile mode ¢, denotes the average number
of vapor locks and m; denotes the mass of a vapor lock, The rate of change of mass dmg/dx is a function
of the superheat AT and of the slip velocity, it depends on the shape and the area of droplet, bubble, and
lock surfaces, Sometimes this relation is a power law [7-9]:

dm, . dm,
dx" =AAT"SZ or dx" = BATm. (32)

Exponents m and k depend on the flow mode and conditions. For a laminar flow of bubbles, Eqgs. (32) and
(2) concur, For a turbulent flow of bubbles, the formula

1= AT

has been derived in [9]. By inmserting (32) and (33) kind of expressions into (31), one can find both the tem-~
perature and the phase content in a system by the method outlined here. When gas bubbles are passed
through holes in walls, then v,, ng, and ny are independent of the superheat AT, but the bubble buildup
during the flow is a function of AT: v = v(AT). When py > pg (py and pg denote the respective partial
pressures of vapor and gas in bubbles), then the rate of bubble buildup can be determined according to (2).
Obviously, py > pg att >1 or x > 1 or AT >»1, Under such conditions, the general equations (12)-(30)
describe the bubbling process in a liquid,

1
—Zdﬂ— = AATm, m = m,exp (—t—), t (33)
dt 4
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NOTATION

A is the cross-sectional area;

Pe is the circumference;

hevap is the heat of evaporation;

p=pic+pll—ec) is the mean density of mixture;

G = pyuyjc + pu(l—c) is the mean mass rate of mixture flow;

®=pc/p is the relative vapor content;

X =pwyec/G is the discharge vapor content;

aft, x) is the relative superheat according to (2);

c(t, %) is the relative vapor content;

Ja is the Jacob number;

as is the volume heat sources;

Se is the surface of interphase boundary;

hy, by, is the enthalpy of vapor;

Tg is the saturation temperature;

Dg, 1y are the total particle currents (per unit time) from unit area of lateral walls and of
container bottom respectively;

welt, X, v);

@olt, X, V) are the probability of bubbles of size v separating from wall and from bottom respec-
tively;

v is the bubble size;

1 is the velocity of liquid phase;

ug is the slip velocity;

Wy is the velocity of bubbles;

y is the mean velocity of vapour phase,

Subsecripts

1 denotes vapour phase,

10,
11,
12,
13.
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